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improve this performance toward quantum limits. Higher

frequencies also appear to be accessible to this promising

device.
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Mode Analysis in Multimode Waveguides
Using Voltage Traveling Wave Ratios

DAVID S. STONE

Abwwct—The voltage travefing wave ratio (VTWR) equations sre

~ ~ generat and the .speMc ease ot guided traveling TWWeS h

muttimode cfreutar waveguides k addressed in detail. An experimental

techrdque for measuring VTWR’s is described and sample experimental

results are auafyzed. Measurements of the VTWR’s can be easily related

to the fractions of totaf power propagating in each waveguide mode. Tlds

information may be X for exampl% to examine the mode inversion

properties of multimode waveguide components.

I. INTRODUCTION

M ULTIMODE transmission lines, with their virtue

of very low insertion loss, have been considered by

many authors for long distance communications applica-

tions [1]. Recent advances in high average power millime-

ter wave sources, such as the gyrotron [2]– [4], have re-

vived interest in the study of multimode waveguides to
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handle power densities which would be prohibitively high

in single mode systems.

The ratio of the maximum and minimum values of the

beating wave electric fields of any two modes propagating

in a multimode guide may, by analogy to the well-

established vernacular of the single mode waveguide, be

denoted the voltage traveling wave ratio (VTWR) for the

two modes in question. In general, the VTWR’S till be a

function of position in the plane normal to the direction

of propagation in the guide. Measurements of the VTWR’s

can be easily related to the mode power, or the fractions

of total power propagating in each waveguide mode. This

information may be used to: 1) characterize the operating

mode output of a high power source with multimode

output such as a gyrotron; 2) analyze the mode conver-

sion properties of overrnoded waveguide components; 3)

determine the optimum locations along the line for 10SSY

obstructions; and 4) allow impedance matching (induced

destructive interference of one or more, unwanted modes)

[5].
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In the following section we mathematically define the

voltage traveling wave ratio. The beat pattern resulting

from the presence of a large but finite number of guided

traveling modes is analyzed in Section III and related to

the mode power fractions. The special case of two circular

electric modes propagating in cylindrical waveguide is

treated in Section IV and this analysis is applied to a set

of VTWR measurements in Section V.

II. VOLTAGE TRAVELING WAVE RATIO

Consider the superposition of two plane waves with

complex amplitudes A. and Am traveling in the positive z

direction. We may write the resultant wave amplitude as

C(z)= [A. ]e -
,knz-i+n +l~mle-ikm.-l+m (1)

where

{

Im <xl~,~)
+n,m = arctan

Re (~n, m) }
(2)

and kn, ~ are the propagation constants or wavenumbers.

We are interested in cases where such a resultant wave, or

beat pattern, is measured by a detector sensitive to the

quantity

]c(z)l’ =lAn[’+[Aml’

+2[x4nl lAwlcos{(kH -k~)z+(@. -@m)}. (3)

We can identify the beat wavenumber Kn~ G Ikn – km 1/2.

The beat wavelength is ~~~ E 2 r/K... We may eliminate
the beat phase, (o. – ~~ ), by suitable choice of origin in z.

Solving for the ratio of the maximum and minimum

values of IC(z ) I we define the voltage traveling wave ratio

(VTWR)

upper sign: lA.l>lAnl, lower sign: IA. I < lA~ I (4)

where the value of the VTWR can range from unity to

infinity. Turning this expression around we find the ratio

1A~12 _

(

VTWRTI 2

1An12 )VTWR*l ‘
upper sign: lA.l>lA~l,

lower sign: I~. I < lA~ 1. (5)

Equation (5) relates a measurable quantity, the VTWR for

modes. n and m, to the ratio of traveling plane wave

amplitudes. The proper choice of signs in (5) will be

discussed in more detail in Sections III and IV.

III. ARBITRARY CROSS-SECTIONAL WAVEGUIDE,

MANY MODES PRESENT

We wish to deduce the fractions Ian 12 of the total

transmission line power contained in each waveguide mode

from the measured beat wave pattern [C(r, z) I2. The

multimode transmission line is uniform in the direction of

propagation but may have any arbitrary cross section.

The superposition of many modes traveling in the positive

z direction gives the measured resultant wave amplitude

C(r, z)= ~ ~ anl?n(r)e-iknz (6)
n

where the propagation wavenumbers kn are real and con-

stant, the sum is performed over a finite number of

modes, and the constant CO represents the sensitivity of

the detector. The a.’s are normalized according to

~la.12=1. (7)
n

In the plane (denoted by r) orthogonal to the z axis, the

amplitude of each mode has a spatial dependence RJr).

As the dimensions of the waveguide cross section are

known, the Rn’s are known, orthogonal, and normalized

~d2rRn(r)R;(r)=%m (8)

The integral in r is taken over the entire waveguide cross

section, The “square-law” detector measures the quantity

/C(r, Z)12 = Co ~ ana~RH(r)R~(r)e -i(kn-km)z. (9)
n,m

Taking the Fourier transform of both sides of (9)

&~_@ dze’kzl C(r, Z)12
co

=CO X a.a~R.(r)R%(r)8 (k–(k. –km)). (10)
n,m

To find the total intensity of each spectral line in k-space

we operate on (10) with lim J#~c’ dk, where K-kn, – km,

with n’ and m’ undeterm;n;%, and we find

= Co x anczll?n(r)R%(r)&(IC) (11)
n,m

where

%l(K) =%’, n~m’,m, n+m

8= n’, m’~ n=m. (12)

We have assumed that there exists no (n’, m’) for which

k,, – k~, = kn – km. Thus, we exclude the simultaneous

presence of two or more modes degenerate in kn. For
n=m, (11) and (12) give

where we have imposed (7) and (8). For n #m we find

Coa~a~RH(r)R~(r)

m sincz
= lim ~

J
— ei(’. –’.)2 lC(r, Z)12. (14)

C+ov —~ z

Taking the absolute square of both sides, dividing through

by IRm(r)l 2, and summing ~ , we solve the resulting
m+n
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TABLE I
RAOIAL DEPENDENCEOF BEAT PHASEFORCmcoLAR ELsmuc

MODES

‘Eon
Radial Dependence: TE~m Radial Depe.de.. e: .(on(r )-on(.))

()

J, ~

()

Xmr

J1 —
a a

>0 >0 0

<0 >0 +“

-n

o

quadratic equation for the made power fraction:

1U:2=+5+ ‘:-’~:~ ’15):;;2
n 9

- L/2

The limit in ~ and the limits on the integral in z have been

discarded and replaced with a finite integration interval L
over which the beat pattern is measured. This treatment is

valid as long as

(16)

where the brackets < ) indicate the longest beat wave-

length of interest in the system.

Equation (15) is the desired result. It states that the

mode power fraction for the nth mode is deduced by: 1)

measuring the beat wave pattern at some point r over a

length L which satisfies (16); 2) transforming the beat

pattern into beat wavenumber space; 3) summing trans-

form contributions from all beat wavenumbers after

weighting each term by the proper r dependence; and 4)

normalizing the sum over m # n to the r dependence of the

nth mode and the volume integral of the beat pattern. The

ambiguity in sign which occurs in (15) has been observed

in the simple case (5), and results from the fact that the

square law detector rectifies the transmission line signal

and thus ignores necessary phase information. In practice,

one resolves this ambiguity by performing measurements

at two different points r and then choosing the sign which
gives a result independent of r. This point will be dis-

cussed further in Section IV.

IV. CYLINDRICAL WAVEGUIDES-TWO CIRCULAR

ELECTRIC MODES PRESENT

The coefficients in (17) have been normalized as required

by (7) and (8). The roots of Jl(x) = O are denoted as

x.(n > 1) and r and a are the radial coordinate and
waveguide wall radius. Taking the absolute square of (17)

we have

The coefficients in (17) have been normalized as required

by (7) and (8). The roots of .ll(x) = O are denoted as

x.( n > 1) and ~ and a are the radial coordinate and

waveguide wall radius. Taking the absolute square of (17)

we have

IC(r, Z)12 =
WI.L(:)12 wl.L(~)l’

+
lJo(xn)12 lJo(xm)12

+
41a.lla~llJl(%)llJ,(%)l

lJo(xn)llJo(xm)l

.Cos{(kn –km)z+(+n –Om)

+ddr)-um(r))}. (18)

The term n(un(r) – u~(r)) results from the convention for

positive definite wave coefficients adopted in (1) and may

be easily evaluated using Table I. Equation (18) also

contains the familiar beat wavenumber Kn~s Ikn – km I/2.
For modes of interest here we may compute the beat

wavelengths

Anm=g=
2A

“n”F==-f%$_
~ 16m2a2 for A’x: m

–Alx; –x; l ‘
-<1 (19)
47r2a2

where A is the free space wavelength. Using (5) and (17)

we find the mode power ratio

laml’— =Gnm(r) ( )VTWR (,)71 2

lanl’ VTWR (r)t 1
(20)

tilanlJ xr~ e-iknz-i+n e Iaml J ‘mr e-ikmz-i+.

()
C(rjz)= ,Jo(xn)l I .

(–)

(17)
lJo(%l)l 1 a -
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TABLE II
CHOICE OF SIGN m (20)

r’
.cass

2

3

4

with

Gn=(r, ) > G“El->) VTkR( r,) > VTWR( ,2)

Gn=(rl) > Gn=(r2; VTUR(r, ) < VTWR(r2)

Gm(r, ) < Gnm(r2) VTUR( r,) > VT’dR(r2)

Gn=(rl) < Gnm(F2) VTWR(rl) < VTtm(r2)

1( )1
2

lJo(xm)12J, ~

Gn~(r)a and Gn~(r) = G;.l(r).

1( )1

2

IJO(XJ2J, ~

PrQDer Slwl

LOW, S,&.

upper sw

Ww sw

LOW, S,gn

Of course, we could also have arrived at (20) directly from

(17) by employing the definition (4) and the general

formula (15).

To resolve the ambiguity in signs in (20) we make

VTWR measurements at two positions, rl and r2, and then

require

Gn~(rl)
( :::21::r=Gm(r2)(:K[2i::r

(21)

After some algebra, (21) leads to four inequalities

ZCVTWR (rl)VTWR (r2)[VTWR (r2)–VTWR (rI)]

t [VTWR (r2)– VTWR (rl)] ?O. (22)

The four corresponding solutions are summarized in Ta-

ble II. To choose the proper sign in (20) we must measure

and compare the values of VTWR (rl) and VTWR (r2 )

and calculate and compare the coefficients G.~(rl ) and

G. M(r2). Table II will then indicate the proper choice of

sign.

V. VTWR MEASUREMENTS

We now present an example of the application of VTWR

measurements. The experiments were carried out using a

traveling wave indicator of novel design (see Fig. 1) which

can be scanned in r, 9, and z with resolutions of dr-O.2a,
rd8-O.2a, and dz&i/2. The traveling waves were de-

tected with a polarimetric probe adjusted to pick up

signals proportional to the square of the azimuthal wave
electric field IE. 12. VTWR measurements were performed

in 2.5-in diameter waveguide at the downstream end of a

complex but axisymmetric overmoded waveguide struc-

ture, the output/collector section of a Varian VGA-8000

gyrotron. A TE02 wave at 28 GHz was launched into the

structure from the upstream end. The quantity IE. 12 was

measured for r= – a to + a at a number of axial positions

z, as shown in Fig. 2.
It is apparent from Fig. 2 that the launched TE02 wave

has been partially converted into other circular electric

modes. For the moment we ignore the presence of the

TE03 mode by plotting IEo(z)\ 2 versus z at two different

LARGE BEARING (TRANSLATION IN ‘1)

PROBE MOUNT (TRANSLATION IN Z)

CRYSTAL DETECTOR

/

PRDBE TIP

-— –===–== --

!!4!%/’EJg--J
LINEAR SLIOE
[TRANSLATION IN r)

Fig. 1. Schematic diagram of a novel traveling wave indicator used for
measurement of VTWR’s in multimode cylindrical waveguides. The
instrument is espable of remotely controlled scanning in radius and
azimuth and may be scanned manually in the axial direetion.

Fig. 2. Measured beat pattern, as seen in cold test, of the mode output
of the Vanan VGA-8000 gyrotron. The traveling wave indicator sig-
nal, which is proportional to [E@12, is plotted in arbitrary units versus
radius and axial position.

“0 1 2 3 45 6 78

AXIAL POSITION (INCHESI

Fig. 3. Measured beat pattern, as seen in cold test, of the mode output
of the Varian VGA-8000 gyrotron. The traveling wave indicator sig-
nal, which is proportional to [E8 12, is plotted in arbitrary units versus
axial position at two different radial positions on both sides of the
waveguide: r= + xl a/x3 (open circles), r= – x ~a/x3 (open squares),
r= +X2 a/x3 (solid circles), and r= – x2a/x3 (solid squares). The
VTWR’S have been determined by drawing roughly sinusoidal curves
through the data and then using (4).

radial positions for which the TE03 is identically zero,

/ . The results are shown in Fig. 3. Ther=xla/x3, x2a X3
beat wave pattern of the TEOI and TE02 modes is clearly

evident. The beat wavelength measured (-16 in) is close
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TABLE III

MODE POWER FRACTIONS AT OWTPUT OF VGA-8000 GYROTRON

MQ&

TEO1 27L5

TE02 63*5

TE03 10*5

&ll other 0+5
modes -0

—-

Total 100%

to that predicted by (18). Furthermore, the beat phase

jumps by -r rad from its value at r = x ~a/x3 to its value

at r = x2a/x3 as predicted in Table I.

We apply the VTWR definition (4) to the fitted curves

in Fig. 3 and find

()VTWR ~ = 3.9
X3

()VTWR ~ =6.9 ,
X3

while we calculate

()xla
G12 — =0.796

X3

()

xza
G,z — = 1.258.

xx

We now employ (20) with the lower set of signs (as

dictated by Table II) and take the mean of the mode

power ratio measurements made at r= xla/x3, x2a/x3. A

similar analysis may be performed on the beat pattern

between the TEOI and TE03 modes, by setting r= xla/x2.
The measured mode power fractions are summarized in

Table III, where we have required the proper normaliza-

tion (7).
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VI. CONCLUSIONS

We have described a technique for measurement of the

voltage traveling wave ratios in multimode waveguides for

the wavelength regime d/L~A/d~O.2, where d is the

characteristic size of the waveguide cross section and L is

the axial length over which the multimode beat pattern

must be observed (16). Such measurements provide infor-

mation necessary for design of multimode waveguide

components and integration of such components into

complex multimode systems. In illustration, we have

analyzed cold test measurements of the mode conversion

of a TE02 mode by a series of axisymmetric mismatches.

We have also addressed the general problem of measuring

mode conversion properties of severe nonaxisymmetric

mismatches. The task is handled by measuring the beat

pattern over an axial length L and Fourier transforming

the data into beat wave number space.
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