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improve this performance toward quantum limits. Higher
frequencies also appear to be accessible to this promising
device.
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Mode Analysis in Multimode Waveguides
Using Voltage Traveling Wave Ratios

DAVID S. STONE

Abstract—The voltage traveling wave ratio (YITWR) equations are
discussed in general and the specific case of guided traveling waves in
multimode circular waveguides is addressed in detail. An experimental
technique for measuring VIWR’s is described and sample experimental
results are analyzed. Measurements of the VTWR’s can be easily related
to the fractions of total power propagating in each waveguide mode. This
information may be used, for example, to examine the mode conversion
properties of multimode waveguide components.

I. INTRODUCTION

ULTIMODE transmission lines, with their virtue
of very low insertion loss, have been considered by
many authors for long distance communications applica-
tions [1]. Recent advances in high average power millime-
ter wave sources, such as the gyrotron [2]-[4], have re-
vived interest in the study of multimode waveguides to
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handle power densities which would be prohibitively high
in single mode systems.

The ratio of the maximum and minimum values of the
beating wave electric fields of any two modes propagating
in a multimode guide may, by analogy to the well-
established vernacular of the single mode waveguide, be
denoted the voltage traveling wave ratio (VITWR) for the-
two modes in question. In general, the VTWR’s will be a
function of position in the plane normal to the direction
of propagation in the guide. Measurements of the VTWR’s
can be easily related to the mode power, or the fractions
of total power propagating in each waveguide mode. This
information may be used to: 1) characterize the operating
mode output of a high power source with multimode
output such as a gyrotron; 2) analyze the mode conver-
sion properties of overmoded waveguide components; 3)
determine the optimum locations along the line for lossy
obstructions; and 4) allow impedance matching (induced
destructive interference of one or more unwanted modes)

[5

0018-9480/81 /0200-0091$00.75 ©1981 IEEE



92 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 2, FEBRUARY 1981

In the following section we mathematically define the
voltage traveling wave ratio. The beat pattern resulting
from the presence of a large but finite number of guided
traveling modes is analyzed in Section III and related to
the mode power fractions. The special case of two circular
electric modes propagating in cylindrical waveguide is
treated in Section IV and this analysis is applied to a set

.of VTWR measurements in Section V.

II. VOLTAGE TRAVELING WAVE RATIO

Consider the superposition of two plane waves with
complex amplitudes 4, and A,, traveling in the positive z
direction. We may write the resultant wave amplitude as

C(z): lAnIe—tk,.Z—i&?,, +!Amle—ik,,,z—-t¢m (1)

where

Im (4,, ) } o

qb,,’mEarctan{ Re (4, .5

and k,, ,, are the propagation constants or wavenumbers.
We are interested in cases where such a resultant wave, or
beat pattern, is measured by a detector sensitive to the
quantity

IC(2)|? =] 4,]? +|4,,|?

+2|4,|4,,|cos{(k, —k,)z+(d, = ¢,)}. (3)
We can identify the beat wavenumber X,,, =|k, —k,,|/2.
The beat wavelength is A ,,,=2%/K,,. We may eliminate
the beat phase, (¢, —9,,), by suitable choice of origin in z.
Solving for the ratio of the maximum and minimum

values of |C(z)| we define the voltage traveling wave ratio
(VTWR)

1€ max _ 1 4n+ A0l _ [44]+] 4]
VIWR= = = = )
1€ min [ 4a] =140l 7 [ Aa]F[A,]

upper sign: |A4,|>|4

lower sign: |4,]<|4,,| (4)

ml>
where the value of the VITWR can range from unity to
infinity. Turning this expression around we find the ratio
|4,,]? _(VTWR:l
14,2 VIWR 1

2
) , upper sign: |4,|>|4,,]

lower sign: |4,|<|4,,|. (5)

Equation (5) relates a measurable quantity, the VTWR for
modes. n and m, to the ratio of traveling plane wave
amplitudes. The proper choice of signs in (5) will be
discussed in more detail in Sections III and IV.

III. ARBITRARY CROSS-SECTIONAL WAVEGUIDE,
MANY MODES PRESENT

We wish to deduce the fractions |a,|? of the total
transmission line power contained in each waveguide mode
from the measured beat wave pattern |C(r,z)|%. The
multimode transmission line is uniform in the direction of
propagation but may have any arbitrary cross section.
The superposition of many modes traveling in the positive

z direction gives the measured resultant wave amplitude
C(r,z)=V G Xa,R,(r)e %= ©
n

where the propagation wavenumbers k, are real and con-
stant, the sum is performed over a finite number of
modes, and the constant C, represents the sensitivity of
the detector. The a,’s are normalized according to

2la,?=1. Q)

In the plane (denoted by r) orthogonal to the z axis, the
amplitude of each mode has a spatial dependence R, (r).
As the dimensions of the waveguide cross section are
known, the R,’s are known, orthogonal, and normalized

[d*rR(r)RE(r)=8, . ®)

The integral in r is taken over the entire waveguide cross
section. The “square-law” detector measures the quantity

|C(r, 2)|* =Cy 2 a,a},R,(r)R}(r)e " Ea™km (9)
Taking the Fourier transform of both sides of (9)
1 *® ikz 2
5 f_wdze |C(r, 2)|

=G X a,a5 R, (r)R(r)8(k—(k,—k,)). (10)

To find the total intensity of each spectral line in k-space
we operate on (10) with lim [&*¢dk, where K=k, —k,,

€

€—>!
with #»” and m’ undetermined, and we find
.1 p sinez
hm—f dz|C(r, 2)|?- 2L ik
e—~>0 T J o z

=G X a,a,R,(r)R}(r)D,,(K) (11)

where
Dnm(K)=8n',n8m’,m’ n#m
=8y s n=m. (12)

We have assumed that there exists no (n’, m’) for which
k,—k, =k,—k,. Thus, we exclude the simultaneous
presence of two or more modes degenerate in k,. For
n=m, (11) and (12) give

sinez

(13)

.1 poo
Cy=1lim — dz
e—0 T — o0 z

fdzrlC(r, 2)|?

where we have imposed (7) and (8). For n¥m we find
Coanan, R, (r)R;(r)
1 r> sinez
= lim — —=ekn—kn)z|C(r, 2)|2. (14
o) 7 ¢ IC(r,2)[%. (14)
Taking the absolute square of both sides, dividing through

by |R,(r)|?, and summing 3, , we solve the resulting
m=n
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TABLE 1
RADIAL DEPENDENCE OF BEAT PHASE FOR CIRCULAR ELECTRIC
MODES

TEon Radial Dependence:

x . r
n
a

TEDm Radial Dependence:

w(cn(r)—cm(r))

X r
o}

J‘( )
a

>0

<
>
<

o o o

>0 0

>0 + 7

<0 -7

<90 0

quadratic equation for the mode power fraction:

-+ m#n

L[ AT IR
1—

2

L/2 .
f / dze'®»—km7|C(r, 2)|?
—L/2

(15)

2

N —

|a,|? =

|R,(r)|?

The limit in € and the limits on the integral in z have been
discarded and replaced with a finite integration interval L
over which the beat pattern is measured. This treatment is
valid as long as

1
where the brackets {( > indicate the longest beat wave-
length of interest in the system.

Equation (15) is the desired result. It states that the
mode power fraction for the nth mode is deduced by: 1)
measuring the beat wave pattern at some point r over a
length L which satisfies (16); 2) transforming the beat
pattern into beat wavenumber space; 3) summing trans-
form contributions from all beat wavenumbers after
weighting each term by the proper r dependence; and 4)
normalizing the sum over m+n to the r dependence of the
nth mode and the volume integral of the beat pattern. The
ambiguity in sign which occurs in (15) has been observed
in the simple case (5), and results from the fact that the
square law detector rectifies the transmission line signal
and thus ignores necessary phase information. In practice,
one resolves this ambiguity by performing measurements
at two different points » and then choosing the sign which
gives a result independent of r. This point will be dis-
cussed further in Section IV,

IV. CYLINDRICAL WAVEGUIDES— TWO CIRCULAR
ELECTRIC MODES PRESENT

The coefficients in (17) have been normalized as required
by (7) and (8). The roots of Ji(x)=0 are denoted as

2

[ & [aricr, )
-2

The coefficients in (17) have been normalized as required
by (7) and (8). The roots of Ji(x)=0 are denoted as
x,(rn>1) and r and a are the radial coordinate and
waveguide wall radius. Taking the absolute square of (17)

we have
") W)
[Jo(x)I2 | Jo(x )|
Haullanl 172 )14 2)
| o)l Jo( X))
~cos{(k, —kp)z+ (b~ y)
+7r(on(r)—am(r))}. (18)

The term #(o0,(r)—6,,(r)) results from the convention for
positive definite wave coefficients adopted in (1) and may
be easily evaluated using Table I. Equation (18) also
contains the familiar beat wavenumber X, =|k, —k,,|/2.
For modes of interest here we may compute the beat
wavelengths ‘

2 2

2|a,|?

2|a,|*

|C(r, 2)|? =

ml

’ Ax2 Ax2
] m
2,2 2.2
g_l_&rr_a_, for }\x"’"’<<1 (19)
Ax2=x2| 47%?

where A is the free space wavelength. Using (5) and (17)
we find the mode power ratio

%(n>1) and r and a are the radial coordinate and a,, |2 VIWR (r)%1\?
waveguide wall radius. Taking the absolute square of (17) P G,,m(r)( m—l) (20)
we have |a,] "=
Cc(r,z)= _MJI( XpT )e —zk,,z—l¢,.___MJl(f'"_r)e — ik Z =ity (17)
| Jo(x,)] 7\ @ [ Jo(x,)| "\ @
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TABLE II
CHOICE OF SIGN IN (20)
Cage Calculated Quantity Measured Quantity Proper Sign
1 Gm:(r1) > sz["z) VIWR(r,) > VTHR(rE) Lower Sign
2 Gnm(r1) > Gnn:(r2‘/ VTWR(r ) < VTHR(:‘Z) Upper Sign
3 Gnm(r‘) < Gnm(rZ) VIWR(r{) > VTHR(rz) Upper Sign
4 Gnm(r,) < Gnm(rz) VIWR(r) < VTHR(rZ) Lower Sign
with
2
X, r
2 n
eI 2 =2 )
a
— — -1
Gnm(r)_ and Gnm(r)_Gmn (r)

2

x,.r
’1(7)

Of course, we could also have arrived at (20) directly from
(17) by employing the definition (4) and the general
formula (15).

To resolve the ambiguity in signs in (20) we make
VTWR measurements at two positions, r, and r,, and then
require

| Jo(x)I?

VIWR (r,)F1 )2_G (VTWR (r)F1 )2
VIWR (r))+1) wn(72) VIWR (r,)+1 )’

21

Gnm(rl)(

After some algebra, (21) leads to four inequalities
FVTWR (r,)VTWR (r,)[ VTWR (r,)~VTWR (r)]
+[VITWR (r,)—VTWR (r)]20. (22)

The four corresponding solutions are summarized in Ta-
ble II. To choose the proper sign in (20) we must measure
and compare the values of VIWR (7;) and VIWR (r,)
and calculate and compare the coefficients G,,(r,) and
G,.(r,)- Table II will then indicate the proper choice of
sign. ‘

V. VTWR MEASUREMENTS

We now present an example of the application of VTWR
measurements. The experiments were carried out using a
traveling wave indicator of novel design (see Fig. 1) which
can be scanned in r, 8, and z with resolutions of dr~0.2a4,
rd8~0.2a, and dza)/2. The traveling waves were de-
tected with a polarimetric probe adjusted to pick up
signals proportional to the square of the azimuthal wave
electric field | E;|>. VTWR measurements were performed
in 2.5-in diameter waveguide at the downstream end of a
complex but axisymmetric overmoded waveguide struc-
ture, the output/collector section of a Varian VGA-8000
gyrotron. A TE, wave at 28 GHz was launched into the
structure from the upstream end. The quantity | E,|* was
measured for r= —a to +a at a number of axial positions
z, as shown in Fig. 2.

It is apparent from Fig. 2 that the launched TE,, wave
has been partially converted into other circular electric
modes. For the moment we ignore the presence of the
TE,; mode by plotting | E,(z)|? versus z at two different
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PROBE MOUNT (TRANSLATION IN 2)
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XY RECORDER
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MULTIMODE
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WAVEGUIDE

Fig. 1. Schematic diagram of a novel traveling wave indicator used for
measurement of VITWR’s in multimode cylindrical waveguides. The
instrument is capable of remotely controlled scanning in radius and
azimuth and may be scanned manually in the axial direction.

ELECTRIC FIELD SQUARED (ARB UNITS}
T T T

60 N
50 $G“€$
- 40 o\
30 \«\0
20 ¢0°
10 *\\*
t T T T T T T v T T T 70 [N
10  -06 02 02 06 10
r=-a RADIAL POSITION r=+a

Fig. 2. Measured beat pattern, as seen in cold test, of the mode output
of the Varian VGA-8000 gyrotron. The traveling wave indicator sig-
nal, which is proportional to | Ey|?, is plotted in arbitrary units versus
radius and axial position.

ELECTRIC FIELD SQUARED (ARB UNITS)

AXIAL POSITION (INCHES)

Fig. 3. Measured beat pattern, as seen in cold test, of the mode output
of the Varian VGA-8000 gyrotron. The traveling wave indicator sig-
nal, which is proportional to | E,|?2, is plotted in arbitrary units versus
axial position at two different radial positions on both sides of the
waveguide: r=+x,a/x; (open circles), r= —x,a/x; (open squares),
r=+x,a/x; (solid circles), and r=—x,a/x; (solid squares). The
VTWR’s have been determined by drawing roughly sinusoidal curves
through the data and then using (4).

radial positions for which the TE,; is identically zero,
r=x,a/x;, x,a/x;. The results are shown in Fig. 3. The
beat wave pattern of the TE,; and TE,, modes is clearly
evident. The beat wavelength measured (~16 in) is close
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TABLE II1
MopE Power FRACTIONS AT OUTPUT OF VGA-8000 GYROTRON
Mode Measured Mode Power Fraction (%)
TE, 27 £ 5
TEq, 63 4+ 5
TEqgq 1045
A1l other 0+5
modes -0
Total 100%

to that predicted by (18). Furthermore, the beat phase
jumps by ~ rad from its value at r=x,a/x, to its value
at r=x,a/x, as predicted in Table I.

We apply the VTWR definition (4) to the fitted curves
in Fig. 3 and find

x,a
VIWR| — }]=3.9
X3

VTWR(fﬁ)=6.9
X3

while we calculate
x,a
Gl —=0.796
X3

X,a
Gu(x%)=1.258.

We now employ (20) with the lower set of signs (as
dictated by Table II) and take the mean of the mode
power ratio measurements made at r=x,a/x3, x,a/x;. A
similar analysis may be performed on the beat pattern
between the TE,, and TE\; modes, by setting r=x,a/x,.
The measured mode power fractions are summarized in
Table III, where we have required the proper normaliza-
tion (7).
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VI. CONCLUSIONS

We have described a technique for measurement of the
voltage traveling wave ratios in multimode waveguides for
the wavelength regime d/L:<A/d<<0.2, where d is the
characteristic size of the waveguide cross section and L is
the axial length over which the multimode beat pattern
must be observed (16). Such measurements provide infor-
mation necessary for design of multimode waveguide
components and integration of such components into
complex multimode systems. In illustration, we have
analyzed cold test measurements of the mode conversion
of a TEy, mode by a series of axisymmetric mismatches.
We have also addressed the general problem of measuring
mode conversion properties of severe nonaxisymmetric
mismatches. The task is handled by measuring the beat
pattern over an axial length L and Fourier transforming
the data into beat wave number space.
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